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Applications of Differential Topology to Grid Generation

D.C. Wilson
University of Florida

Abstract

) The purpose of this paper is to indicate how smoothing

techfiiques from Differential Topology can be applied to

the area of grid generation in Computational Fluid Dynamics.

The basic method is to patch together one global grid from

a number of smaller ones. The smoothing theory allows one

to blend the grid from one section into the grid of an

adjacent one. ,

DTIC
-!ECTE

A1ppro,,,

4.'<

This Res. 4 ;ch was supported in par bAOSG ran B-l8

8512 31 06



: "

N77

I. Introduction

The author developed the ideas outlined in this paper while

attempting to construct an algebraic grid1 for the X-24C aircraft.

(See Figure 1.) In a natural way this plane can be divided

into the forebody, the body, and the airfoil. The forebody

can be further divided into the nose and the canopy. The airfoil

region can be subdivided into the airfoil and the body adjacent

*.. to it. The frustration of trying to blend these various pieces

together into one large grid drove the author to search for

a technique of approximating one-to-one continuous functions

(i.e. homeomorphisms) by one-to-one smooth functions (i.e. diffeo-

- morphisms). Techniques lifted from the Differential Topology

books by Hirsch 2 and Munkres 3 provide the foundation for the

theorems and ideas presented in Section II. Theorems 2.1 and

2.3 guarantee that any continuous transformation can be approxirated

arbitrarily closely by a smooth one. Theorems 2.4 and 3.1

can be used to ensure that the approximation will have non-zero

Jacobian. Theorem 2.5 ensures that the approximation of an

orthogonal grid will be almost orthogonal.

To apply the smoothing theory to grid generation a large

. number of double (or triple) integrals must be computed. Theorem

*3.2 is the 2-dimensional version of Simpson's Rule which was

*F used to calculate the convolutions at the various grid points

* for the examples pictured at the end of the paper. While other

more sophisticated methods (e.g. iterated Romberg) could be
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II. The Smoothinq Theory

An excellent reference for the Advanced Calculus needed in

this section is Rudin 4 . While the theorems are all stated for

two dimensions, they are all valid in n dimensions.

The smoothing techniques from Differential Topology involve

a convolution with a "bump" function. While there are innumerable

choices for a bump function (e.g. cubic B-splines), the one

indicated below proved convenient.

0 if x - 0
Definition. ex W -1/  x

e if X > 0

The real valued function a is C' (i.e. All higher derivatives

exists); the graph of a is indicated in Figure 2.

If a < b, then define P(x) =aCx - a) •c(b - x). The

function B is also C'; its graph is indicated in Figure 3.

Since we want the interval [a,b] to be symmetric about zero,

we define EXP(-p 2/(p 2 
- x2 ) if Jx) < p -

p(X) =
J0 if lxi _ P, where the

parameter p > 0. If Ap B (x)dx and 0 (x) x)/A then
P -p p p p p

0 (x) is a C bump function such that fP 0 (x)dx = 1. The
p -p p

function 0 (X,y) = W -p(y) is a bump function of two

variables such that jPjP 0 (x,y)dxdy 1.
-p-p p

Let R denote the square x [-p,p]

Definition. If F( ,n ) is a piecewise continuous function from

2R R, the convolution of F by 0 is:
p

-. .-. --................................. ...... .............,. . ............L"-'"-"."-" '"'"''-':'-"':-"'-_ :'." "-"- ", -'."".-'".".."-"."..'-"'-",'."-".."-'."..".-....."".".-."......"-...-...".".".-..-"-"--".-."-.-".-..-"



0 F(I If ( -u n -V) 0(uv)dudv.
P Rp p

aThis convolution can be thought of as an "average" of the values

F near ( ,n). Heuristically, Theorem 2.1 states that if p

is "small", then 0 * F is "close" to F.

Theorem 2.1.

If F is continuous, E >0, andI F( -u, n-v) -F( ,rj) I< C

for all (u,v) £R 1,  then I~*F( ,Tj) -F( ,n)1!5 c

* Proof.

The result follows from the following sequence of

equalities and inequalities,.

10*F(&,n) -F(&,n)l

p

I f f F(&-u, r-v)0) (u,v)dudv -F( ,n)j
Rp

f 0 (u,v)-lF( -u, nI-v) -F(&,ri)l dudv
Rp

5 C f 0 p(u,v)dudv EC.
Rp

Theorem 2.2 shows that if p is "small" and 3F(E,n) is

is continuous at (,)then (O (,l) i close"

to aF(&,n) .Note that Theorem 2.2 can be easily generalized to

higher derivatives.

Theorem 2.2.

If F( ,n) is C ,then (0,*F~n) F~f)
p0



moreover, if C '0 and laFU -u, Tn-v) -FUC, n) 5 c for (u,v) R

then 130 F(E,ri) - F(&,n)I

Proof.

Since 3 f 0I 0(u,v).F(E-u, n-v)dudv = fO(u,v)-3F(E--u~n-v) dudv,
a Rp Rpa

C *FUE,n) 0 * F(E,n). The second half of the theorem follows

from the proof of Theorem 2.1.

Remark.

Theorem 2.2 could have been phrased as follows: If aF is

piecewise continuous and mn 5 aF S M, then m 5 0 aF~ M.

Thus, at points where aF is not continuous, the convolution of F

by Op blends" the first partials of the grid in one section into

those of the next. This blending also occurs for all higher

derivatives.

Theorem 2.3.

If F(E,r) is piecewise continuous, then 0 F(E,n) is CWO.

Proof.

By change of variables we have

p~~C. ~ff -Iop(u~v)-F(&-u, n-v)dudv
Rp

- a *f r Q(C+u, n+v) F(u,v)dudv

'1+p &+p

f .f a 0O(U+u, n+v)* uvdd.
fl-p &-p 

uvdd.



since 0~ is % * F is C70.

Theorem 2.4 ensures that if T is onC--to-one and p is "small",

then Op* T is one-to-one.

Theorem 2.4.

If T( ,n) (XU(.,r), Y(C,n)) -,here XUC,n) and Y(C,n) are C1 ,

then if the Jacobian 3 of T is not zero there is a p> 0 such

that the Jacobian JPof 0~ T(C,n) (0~ X((,n), 0 *Y(&,n))

is not zero.

* Proof.

* The Jacobain J~ (Op a (Op ay) (0* aX) (E) aY).
34 an an at

By Theorem 2.2 lim J, = J.
p--

Theorem 2.5.

Let T(E,n) =(X(t,Ti) ,y(t,n)) be a C1 transformation and

* let Tj be the angle between u =(ax 2- ) and v = (3X Y.
34 at an an

* if y denotes the angle between up =(Op ax Op 3Y )and

vp =(Op 3 X, Op *y Y) then lrn T =

Proof.

By Theorem 2.2 lurn Up=U and lrn vp v. Since cos 'fp
p 0 p+ I-)pO vp

and cost T (urn li IF

. . . . . . . . . . . . . .. . . . . . . . . .
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Theorem 2.6.

If F(C,n) Fljf,n) + F2 (C,n) ,where Fl and F2 arc piecew4ise

continuous, then 0 FUC'n) 0~ Fl( ,ri) + 0 F

Proof.

The additivity of the integral is all that is needed to

prove this theorem.

Theorem 2.7.

If F(C,n) f(E *g(nI) where f and g are piecewise continuous,

then O0 F(&,n) AO * 0() (O

Proof.

This result is an immediate consequence of Fubini's Theorem.

Theorem 2.8.

If F(C,9) A + B& + Cn + D~n,then O * F(&,n) F(,)

Proof.

It is a routine check to show that if GU&In) = ,then

E)* G(FE,n) =G( ,ri). The theorem is now an immediate consequence

of Theorems 2.6 and 2.7.

- ~Theorem 2.8 shows that if a portion of the grid of the air- .-

craft can de defined by equations of the form F(E,n) =A + B , + Cii +

hen the convolution step can be bypassed. Thus, the grid can be

generated much more rapidly in that region.

II.I. The Examples

Theorem 3.1.

If T( ,n) (Un), Y( , n)) has piecewise continuous

* partials which satisfy ml1 !5 a X - Mll, m 2  ax. M12  in2 . Y <M 2 1
a n

and in2 2 :5 2 .M2 for points in,[u-p, u+pI x- [v-p3 v+p], then

a2n



the Jacobian Jp of p* T is non-zero if either mllm 2 2 - M2 1 MI2 > 0

orM M -m m < 0.
11 22 12 21

Proof. 
.'.

By the remark after Theorem 2.2 ml _ p * 0)_M,,

etc. Since m1 1 m2  - M 2 M :5 J is Mo Mero
11 22 12M21 1 1 MllM22 m1 2m21 , Jp is not zero.

Let -p =x < x1 < ... < X2n p be a partition of [-p,p]

such that x.+1 - x1 . h for all i. Let yj = xj. Let Aij = {(i,j)Ii,i/..
or 2n and either i or j odd}. Let Bi {(i J)Iior j 0 or 2n}.

1J

Theorem 3.2. (Simpson's Rule in 2-Dimensions)
C4 - - '-

If F(u,v) is a C function on RD, then

JJ F(u,v)dudv = 4 3 h
2  F(xi, yj) + 2.h 2 . F(xiyj) + Err, -* "

P Ai j Bi j

where lErr 5 M-h 4 -/8 (2p) 2u (The constant M max {V FJ, v -

Proof:

Except for the fact that a 2-dimensional version of Taylor's

Theorem is necessary, the proof of this theorem is the same as the

familiar Simpson's Rule.

Since the functions F(u,v) to be integrated in this paper are

X(u,v) or Y(u,v) convolved with Op , F(u,v) = 0 whenever u = + p

or v = + p. Thus, for the purposes of this paper JJ F(u,v)dudv

h-1 R(xi ,y j ). For the applications illustrated in this
Aij

paper h was chosen to be p/4. This choice of h is equivalent to

.p'--



9.

dividing the square into 16 equal pieces. To approximate the

integral of F when h =p/4 the function must be evaluated at 40

points. See Figure 5.

The following example has been worked out to illustrate how

the theory from the provious section can be applied to a specific

transformation. The equations given below approximate the projec-

tion of one half of the X-24C aircraft into the plane. The trans-

formation to be smoothed is T(u,v) (X(u,v), Y(u,v)) where X(u,v)

and Y(u,v) are defined below. p

if u!5 1, X(u,v) =u and Y(u,v) =2v.

I f 1l5u :52, X(u,v) =-13 + 14u + A8u -. Buv and

Y(u,v) =-3.5 + 3.5u + 1.9v + (.1)uv.

If 2!5 u < 3, X(u,v) = 7 + 4u - 1.15v + .175uv and

Y(u,v) =-.5 + 2u + 1.3v + .4uv.

Let F(u,v) r 2 + v2 + u

3
Let A =22 - v72/4F(l,v) + 3$r2/4-v-F(-l,v),

B = 76 - 19u - 2.5v + .625uv,

3
C =5.5 - /2/4F(-l,v) + 3,f2/4-v-F(l,v), and

D 22 - 5.5u + 10v - 2.5uv.

If 3!5 u!5 4, X(u,v) (u-3)A + B and Y(u,v) =(u-3)C +- D.

if u2 4, X(u,v) =22 - V/Z74-F(5--u,v) 3+ 3/2/4-v-F(u-5,v) and

3
K:Y(u,v) =5.5 - YvQ74F(u-5,v) + 3-v-F(5-u,v)Y/2-/4.

Note that the transformation on the region u a 4 is nothing more

K: than a translated and rotated version of the map w =z .For

5uf <4 the transformation is an itroaonbwenastraight

line~'Y adtew z ap. The grid for this transformation is

illustrated in Figure 4. Note the singularities of the first



deriviv along the lines u~l, u=2, u=3, and u=4. A smoothedJ

verionof hisgrid is seen in Figure 5. This grid was generated

by convolving T with the bump function 0 (u~v) where p =0.5.

Note that the singularities have now disappeared.



IV. Concluding Remarks
%

The mathematics in this paper shows that it is possible to

patch a grid together from local grids. Even if the "patched" N.

grid is not smooth, it can be approximated by a smooth one.

Desirable properties such as orthogonality and appropriate

clustering of grid points will be almost retained. While this

approximation technique will never produce grids as "perfect"

as those generated by conformal or hyperbolic techniques, it

should be useful in piecing together complicated configurations

where one is more interested in obtaining a "reasonable" grid

rather than a flawless one. Once the equations for the grid in

each section have been obtained, the method is very fast. Also,

since the convolutions are evaluated locally there is no accumulated

error. (i.e. Errors incurred in calculating one grid point do not enter

into the calculating of the next.) The examples illustrated were

all run single precision. Obviously, if more accuracy is

warrented, the computer programs could be run with double precision

and with a larger selection of points when applying Simpon's Rule.

When applying the smoothing techniques indicated in this paper,

care must be used when choosing the value of the parameter p. If

p is too large the approximation will not be close enough. Thus,

the Jacobian could become zero or the control on orthogonality

could be lost. If p is small relative to the number of grid points,

-* the grid will have "numerical discontinuities" in the derivatives.

One final remark should be made. The parameter p does not

. X ............



J.A

- have to be a constant. If very tight fit of grid lines is needed

- -- at some point, the parameter p can be allowed to approach zero.

*This new convolution will still be C if p is constant near points

* of discontinuities of the partial derivatives of the transformation.

* If p varies arbitrarily the new transformation will only be C.

. . .. .,,

..........- oint, th .praetrp anbealo.dtoapro...ro ..
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SMOOTHING PATCHED GRIDS

David C. Wilson
Mathematics Department

University of Florida, Gainesville, Florida 32611

Abstract

The purpose of this paper is to indicate how smoothing techniques can be

utilized in the area of grid generation. The focus of the paper is to show

how one global grid can be patched together from a number of smaller ones.

The procedure usually takes place in two steps. First, one global grid is

patched together from a number of smaller ones, allowing for the possibility

that the derivatives along common boundaries may not be continuous. The

second step is to then approximate this grid by a smooth one in such a way -

that the essential structure of each patch is preserved.

This research was supported in part by AFOSR Grant #83-0158. The paper
was revised whilexan ASEE Fellow at NASA Langley during the Summer of 1984.
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I. Introduction

The author developed the ideas outlined in this paper while attempting to

construct a grid for an aircraft. A plane can be divided in a natural way

into components such as the forebody, the airfoil, the tail, etc. The regions

surrounding these components can usually be subdivided in a natural way so

that suitable local grids (or patches) can be found for each subregion.

However, the frustration of trying to splice together these various pieces

into one global grid drove the author to search for a technique which would

blend one patch into the next while still preserving the essential structure

of each local grid. The principal smoothing technique described here involves

a convolution of the grid transformation with a "bump" function to obtain a

new smoother grid which approximates the old one. Each new grid point can be

thought of as a weighted average of nearby points.

In this paper no effort will be made to deal with patches that overlap as

Steger, Dougherty, and Benek [1] have done. In fact the standing assumption

will be that adjacent patches will have common boundary. Moreover, the grid

points on a common boundary between two adjacent regions will be assumed to

agree. In the terminology of M. M. Rai [2] the grid may have metric discon-

tinuities but no discontinuities. Figure 1 indicates the difference. (The

author would prefer to say the grid is continous but not smooth.)

Actually, the problem of smoothing grids has been encountered before.

For example, the elliptic method (31 or [4] can be thought of as a smoothing

technique. The reason for this is that before the iterative scheme is to

begin, the user must provide an initial guess (smooth or not). With good

forture this guess is then rapidly molded into a smooth grid. Even simpler is

the Laplace operator

X. (I,J) - [X (I, J -1) + X 1 , - + 1) + X (- 1, J) + Xn.(I + 1, 3)1-/4.

2
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A few iterations with this operator and a grid can be smoothed signif-

icantly. However, too many iterations may lead to a grid which is not

one-to-one. Examples illustrating this difficulty are discussed in

Section III. Kowalski [5] has developed a variation of the Laplace operator -"

a-

to smooth an algebraic grid. He allowed his operator to sweep through the L

grid as many as 12 times.

3
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II. The Smoothing Theory

In order to explain the examples presented in Section III it is first

necessary to present the background to the smoothing theory. While grid

generation is primarily concerned with a discrete set of lattice points, it

will be convenient here to present the theory in terms of continuous func-

tions, derivatives, and integrals. The transition from the continuous theory

to the discrete theory will be explained in Section III.

To develop the smoothing theory it is first necessary to explain the term

"bump" function. If R denotes the real numbers and p > 0, then a nonnega-

tive function 0p R + (0,-) is a bump function supported on the interval

[-p,p if it is smooth, is identically zero outside [-p,p], and has the

property that

f p(x) dx - p(x) dx 1.
P f.-.

While there are innumerable choices for a bump function, the one indicated

below is convenient to explain and use.

First define the function a:R + [0,-) by the rule

if x 40
a(x) - -l/x ie 1 x if X > 0 '

Note that a is C and identically zero on (-rn,0J. The graph of a is

indicated in Figure 2. If Bp(X) - - p) • a(p - x), then is
p

nonnegative, is identically zero off the interval [-p,p], and is Cr. The

graph of is indicated in Figure 3. If A =f 8(x) dx and

p (x) - p (x)/Ap, then 0p (x) is a Lump function supported on [-p,p].

4



Since grid-generation is primarily concerned with arrays in 2 and 3

dimensions, the notion of bump function must be extended to the square

Rp [-pp] x [-pp]. Note that e (x,y) - 8 (x) * 0 (y) is nonnegative, is

identically zero off Rp, and is CO*. Note also that JJ8p(Xy) dx dy 1.

R~ 
P

Definition: If F(C,n) is a piecewise continuous function from R+ R, then

the convolution of F by e is defined by the equation

6 F(E,n) f f( - u, r - v) 8 (u,v) du dv
p R .

Intuitively, the convolution can be thought of as an average of the

values of F over the square [ - p, + p] x [T - p, n + p] relative to

the weight function 8p (u,v). In particular, if F(xy) -1 for all

(x,y) e R2, then 8p * F(E,n) 1 for all E,n. Thus, it becomes clear that r..
if F is nearly constant near ( then 8p * F(ET) is "close" to

F(E,n). Theorem 2.1 gives a precise statement of this observation. In fact

Theorems 2.1-2.9 give precise formulations of the following statements.

I. If p is "small", then 8p * F is "close" to F.

2. For any p, the convolution * F is a CO function.

3. If F(&,n) is differentiable at (C,n) and p is small, then all the

derivatives of 8 * F(Fi,) will be close to the derivatives of

4. If T( ,n) - (X(g,n), Y(E,n)), the Jacobian J of T is not zero,

and p is small, then the Jacobian Jp of * T is not zero.

5. If T is orthogonAl and p is small, then * T is "nearly"

orthogonal.

6. The convolution operator is linear.

5
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7. The cohvolution operator is invariaiit when applied to functions of

the form F(x,y) - A + Bx + Cy + Dxy.

At this point the reader who is not interested in the theory can skip

ahead to the examples in Section III. An excellent reference for the Advanced

Calculus needed in the proofs of the following theorems is Rudin (6].

Theorems 2.1-2.3 are lifted directly from the Differential Topology books by

Hirsch [71 and Munkres [8].

" Theorem 2.1 If F is continuous, e > 0, and

- u, n - v) - F(E,n)] c e for all (u,v) e R then

e* Fm~~ F(E, ro)

Proof

The result follows from the following sequence of equalities and

inequalities.

jep * Fr)-

IffF( - u, n - v) p (u,v) dudv -F( i) I %

R

ff Jf(u,v) J F(E u, n v) -F(&,inj dudv

p

' ff (uv) dudv e.

R

Theorem 2.2 If F(&,n) is piecewise continuous, then e * F(~rn) is C.,

6
................... '..2-
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Proof

By change of variables we have

38 0 ( ~ ~ f (uv) F(- u, iT v) dudv
at ffp

RP

a ff 8 (C + u, r~+ v) F(uv) dudv

ae (E+ U n V F(uv) dudv.

Since 0 p is ctm, 6 pF is C *

Theorem 2.3 shows that if p 16 "waall" and BFEi)is continuous at
~)e* F(E~n)

thenis clos toNote that Theorem 2.3 can be

easily generalized to higher derivatives.

Theorem 2.3 If F(C,nl) is C1, then-e* ___

Moreover, if c > 0 and F( - u, in - v) cfor (u,v) e £

38 *F(E,i) aF( C, 7)
then p------- ___

Proof

since -p- I18u(v u, n1 ~dd - v) dudv
a JJ8(uFC u vv)d

R R
p p

38 * VCi) scn afo hetermflosfo h
b-8 Theseodhloftetermflosfmte

at ~p a

proof of Theorem 2.1.

Remark

Theorem 2.3 could have been phrased as follows: If -K- is piecewise
3Ft

contitous and in 4 F <H, then in C *-L M. Thus, at points where

7
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is not continuous, the convolution of F by p blends" the first

partials of the grid in one section into those of the next. This blending

also occurs for all higher derivatives. Theorem 2.4 ensures that if T is

one-to-one and p is "small", then p * T is one-to-one.

*'. Theorem 2.4 If T(&,n) (X(&,n), Y(E,n)) where X(C,n) and Y(C,n) are

C., then if the Jacobian J of T is not zero there is a p > 0 such that

the Jacobian J of 0 * T(Er) (0p * X(C,n), ep * Y(,rn)) is not zero. ..

Proof

The Jacobian I ,,Y p _X A Y"

By Theorem 2.3. lir J J.
p4O p

Theorem 2.5 Let T(&,n) " (X(E,q), Y(E, 1)) be a C1  transformation and let

, ' be the angle between u ( -)and v i _denotes

up" (ep -X Op * ) an v 0 -- ,p * "

the angle between Up * e and Vp P (, X8 * aY)-

then lim - 'F.

P40p

Proof
u *V

p p

and cos- (u v) *lim T -.

Theorem 2.6. If F(g,ri) -F 1(~,n) + F2 Mn)r, where F, and F2  are

*piecewise continuous, then *8 F(E,n) 8 F1C,Mn) + *

.. Proof

'The additivity of the integral is all that is needed to prove this

Burtheorem.

8
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Theorem 2.7 If*F(,n) f() (),where f and g are piecewise contin-

uous, then 0 * F(C,n) (6 * f(c)] • p

-. Proof

This result is an immediate consequence of Fubini's Theorem.

Theorem 2.8 If F(E,n) A + BE + Cin + Dcn, then 0 * F(&,n) - F(&,n). p.

p4

Proof

It is a routine check to show that if G(&,n) =
, then

S* G(En) - G(Cr-). The theorem is now an immediate consequence of

Theorems 2.6 and 2.7.

Theorem 2.8 shows that if a portion of the grid of the aircraft can be

defined by equations of the form F(,n) - A + BE + CnI + D&n, then the convo-

lution step can be bypassed. Thus, the grid can be generated much more

* rapidly in that region.

The next theorem is of interest because it gives sufficient conditions

which ensure that the Jacobian will be nonzero at (g,n) even in the case ...

that the partial derivatives of T(E,n) are not defined at (Fr) In most

applications these hypotheses will be satisfied.

Theorem 2.9 If T(E,n) - (X(C,n), Y(&,n)) has piecewise continuous partials

ax ax a
and ad-bc> , where a c, and d for all points

in (u - p, u + p) x (v- p v + p), then the Jacobian J of e *T is

nonzero. t

9
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Proof

By the remark after Theorem 2.3 a 40 * b, e *y4C
p a~ 8p an p ac '

p an Z

ip (ep -E) (8p En) - (e -E) (e E. >ad bc>o0.

.71

One final remark should be made at this point. While all the theorems in :.

this section have been stated in a two-dimensional setting, each one general- L
izes to three dimensions.

10-



III. The Examples

The purpose of this section is to indicate how the theory from Section II

can be applied to smooth a patched grid. Immediately, we are confronted with

four problems.

1. The size of the parameter p must be fixed. L.-

2. The bump function must be selected.

3. A numerical integration technique must be chosen.

4. A method must be found to fix the points on the boundary, while

retaining the overall smoothness of the rest of the grid.

In the discrete setting the point (F,n) must be replaced by the lattice

*! point (1,J), where I and J are integers. Since the choice of the

parameter p determines the size of the square R., the selection of p now

becomes a decision concerning the number of neighbors of (I,J) to be used when

convolving with the bump function. If the point (I,J) is to be in the center

of the square, the reasonable choices seem to be 9,25,49, etc. In the dis-

crete situation the larger the number of points, the smoother the new grid

- will be. However, the increased number of computations could easily become

"* prohibitive. For the purposes of the examples presented here the author chose

49 neighbors for each point (1,J). These 49 will be of the form

(I + K, + K), where IKI 3 and JK'14 3.

While the choice of bump function is important, it does not seem to be as

critical as some of the other problems. However, if one is careless and

" chooses a bump function which is very near zero except at the point (1,J),

then very little or no smoothing will take place. Since the bump function is

identically zero on the boundary of the square Rp, the integration is now to

be performed over the square (I + K, J + K'), where IKI - 2 and JK'j J 2.

" 11
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The method of integration chosen is the two-dimensional version of the

Newton-Cotes formula indicated in Proposition 3.1. This two-dimensional inte- .

grator was obtained by discarding the remainder term and taking the tensor

product with itself.

Proposition 3.1 (See page 93 of Hildebrand [9].) If x < x < " < X
0 16

h i+I -xi, and fi "f(xi), then

x6  h
f(x)(41f + 216f + 27f + 272f + 27f

Iwo " " 1 2 3 4

9h9 f(8)
+ 216f 5 + 41f6 -1I- (z).

In the theory outlined in Section II there is no mention of boundary

points. If the problem is ignored, the surface of the aircraft will be

smoothed along with the grid. Sharp corners will become rounded. (Compare

Figs. 4 and 5.) While there are a variety of ways to deal with this problem,

the author chose to reduce the amount of smoothing for grid points near the

boundary by linear blending. In particular, if T(I,J) denotes the original

grid point and d is the distance from T(IJ) to the boundary, then the new

grid point will be Tn(IJ) - dT (I,J) + (1 - d) T(I,J), where Ts(I,J)

denotes the corresponding point of the smoothed grid. Figures 6-10 indicate

the rough and smooth versions of various shapes. Since the value of d

was never quite equal to 1 in these examples, small discontinuities

in the derivatives were propagated into the interior of the regions.

Despite this problem the grids were still smoothed fairly well. In

the future the author plans to develop a distance function which is

exactly equal to 1 throughout most of the interior of the region so

that the grid will be smooth away from the boundary.

12
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Figures 11 and 12 have been included to compare the Laplace operator and

the simple average of the nine immediate neighbors. While these two methods ,

are both much faster than the convolution, they usually need to be iterated to

be effective. When iterated without boundary control, the grid points may

drift outside the region in question. This phenomenon is demonstrated by

Figure 13. This same Figure also shows that a transformation which is a

solution of Laplace's equation may fail to be one-to-one even if it is

one-to-one on the boundary. If boundary control is forced on the Laplace

operator, then the grid points will stay in the region. However, discon-

tinuities in the derivatives may appear near the boundary as indicated in '

Figure 14. Figure 15 illustrates the result when the convolution operator is

iterated twice. Obviously, any further iterations and the grid will become

overlapping.
or

1-
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IV. Concluding Remarks ,',','-,

i. V1w

The mathematics in this paper shows that it is possible to patch a grid

together from local grids. Even if the patched grid is not smooth, it can be

approximated by a smooth one. Desirable properties such as orthogonality and

clustering of grid points will be almost retained. These techniques can be '

thought of as postprocessors to remove discontinuities in the grid derivatives

along the boundaries of adjacent patches. A future application could be the

smoothing of grids created from patches, where one patch is generated by a

hyperbolic method, a second by an elliptic method, a third by an algebraic

method (see Ref. [10] or [11]), etc. The final grid would then be a smoothed

version of the union of the patches.

One further remark seems to be in order. When the author began this

research, he only considered the convolution operator. At the suggestion of

P. Eiseman the Laplace operator was also considered. While both wocked well,

the Laplace operator is easier to program, faster in terms of CPU time, and

seemed to generate somewhat smoother grids. A reason for using the convolu-

tion operator is that it seems to be better at preventing overlapping near the

boundary. The Laplace operator can frequently be iterated successfully

5-10 times. The convolution works best when applied 1-2 times.

14
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Figure la. Metric Discontinuity.

Figure lb. Discontir4 aity
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Figur 2. he Gaph f th Funtiona.x)

Figure 2. The Graph of the Function $x(x).
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Figure 4. Corner-Before Smoothing.

Figure 5. Corner-After Smoothing
(but without Boundary Control).

Figure 6. Corner-Smoothed with Boundary Control.
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Figure 7. Foward Facing Ramp-Before Smoothing.

Figure 8. Forward Facin Rm-fte Soohig
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Figure 9. Bump-Before Smoothing.

Figure 10. Bump-After smoothing.



Figure ll1 Corner-Smoothed by Laplace (with Boundary ControlL
and 3 Iterations)

Figure 12. Corner-Smoothed by Nine Point Average.

F~~~~~iqur~~~~~. qo n r *he .b -L pl r _nP \rH '

~~ *** .0- '* ,f :*



• Z "Z . . " . \, r r

..

•. o

r.

Figur 14 onrSote yLpac prtr( trtos .R:

Figure 15. Corner-Smoothed wit Boudary o trol (2 Iterations).
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